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Abstract 

A theoretical investigation of thermal conductance of 

two-dimensional eccentric constrictions has been carried out. 

By the use of conformal transformations, a closed form exact 

analytical solution has been obtained. The solution has been 

presented in terms of three dimensionless numbers - a con- 
ductance number, a constriction number and an eccentricity 

number. The theory has been checked with previously reported 

experimental results. The agreement is excellent. It has 

also been compared with two analytical expressions reported 

earlier. 

Introduction 

When heat flows by conduction through parts of equip- 

ment, in many instances, it is abruptly constricted to 

small cross-sectional areas, or when it flows through surfaces 
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i n  contact it i s  always forced t o  pass through smaller cross- 

sectional areas,  a s  compared t o  flow areas away from such 

abrupt constrictions.  AS a r e su l t  of the convergence and 

divergence of heat flow l ines  a t  and near such a constr ic t ion,  

a thermal resistance (or  conductance) develops. This re- 

sistance is  usually qui te  high compared t o  the resistance 

offered t o  heat f l o w  away from the constriction. For a 

r e l i ab le  heat t ransfer  analysis of a given system, such 

constriction resistances must  be accurately predicted i n  

addition t o  other parameters. 

The simplest constrictions a re  two-dimensional con- 

s t r i c t i o n s  where the constriction geometry i s  a function of 

two rectangular co-ordinates only. The conductances of two-  

dimensional symmetrical constrictions have been investigated 

by Kouwenhoven and Sackett'') , s a c k e t t ( 2 ) ,  Mikic and Rohsenow ( 3 )  , 

a n d  Veziroglu and C h a ~ ~ d r a ' ~ )  both theoret ical ly  and experi- 

mentally. Veziroglu and Chandra obtained the exact solution 

of the problem which agreed very well w i t h  the experimental 

r e su l t s .  The above mentioned researchers, w i t h  the exception 

of Mikic and Rohsenow, also investigated the conductances of 

two-dimensional eccentric constr ic t ions.  They a l l  reported 

some experimental studies,  and additionally Sackett, and 

Veziroglu and Chandra derived analyt ical  expressions f o r  

calculating the conductances of two-dimensional eccentric 

constrictions by making some simplifying assumptions. 

Sackett assumed tha t  on ly  a wedge-like pa r t  (made up of 

s ides  s t a r t i ng  a t  constriction edges and extending t o  flow 

channel boundaries by making a cer ta in  angle w i t h  the con- 
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s t r i c t i o n  plane) of the f l o w  channel near the constriction 

was e f fec t ive  i n  conducting e l e c t r i c i t y  (or heat)  , calculated 

i t s  resistance,  and presented the r e su l t  as  the percentage 

increase i n  resistance of an eccentric constriction with 

respect t o  tha t  of a symmetrical constr ic t ion of the same 

s ize .  This expression would predict  lower resistances (or 

higher conductances) than  those obtained experimentally by 

up t o  5 per cent. Veziroglu and Chandra replaced the constant 

temperature condition a t  the constriction by a uniform f lux 

d is t r ibu t ion  and obtained a ser ies  expression for the con- 

ductance of the eccentric constrictions which gave qui te  a 

good agreement w i t h  the experimental r e su l t s .  However, it 

had the disadvantage of being i n  the form of i n i f i n i t e  se r ies .  

Theory 

Fig. 1 shows the steady s t a t e  isotherms and heat flow 

l i n e s  for a two-dimensional eccentric constriction. The 

heat flow channel w i d t h  i s  2a, the constriction w i d t h  2b, 

the eccentr ic i ty  (the distance between the center l ine of 

the heat flow channel and the centerline of constriction) e ,  

and the channel thickness t. Because of the symmetry, it 

w i l l  suff ice  t o  consider o n l y  one of the half planes, e . g . ,  

the one defined by  y 2 0 .  The steady s t a t e  temperature 

d is t r ibu t ion  m u s t  s a t i s fy  the Laplace's equation, 

(1) - a2T  a2T + - -  2 2 -  
ax ay 

and the following boundary conditions, 
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-a < x < e-b . (4) 

e+b c x < a (5) 

= Constant e-b < x < e+b . ( 6 )  (T) y=o 

The temperature distribution satisfying equation(1) 

and conditions (2) through ( 6 )  can be reduced to a very 

simple, linear, temperature distribtutim by means of three 

conformal transformations. Fig. 2 illustrates these trans- 

formations. Fig. 2~ shows the boundaries of the problem 

posed in the complex z plane. The temperature slope is zero 

along the boundaries ABC and DEF, and the temperature is 

constant along the boundary CD. These boundaries can be 

transformed to the boundaries shown in Fig. 2B by means of 

the conformal transformation of 

(7) 
X Z  z1 = sin(=) . 

which preservesthe Laplace's relationship and the boundary 

cor\.di+,ior?s a?mg t.he transformed boundaries. The distances 

0 C 

the transformation relationship ( 7 ) ,  given by 

and O ~ D ~  in the complex z1 plane are, with the help of 1 1  

l t  *oc Olcl = sin - 2a 
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= sin 
OICl 2a 

II *OD OIDl = sin - 2a 

= sin I&) 3 
OIDl 2a 

Now a second transformation will be carried out in order 

to bring the ordinate to the middle of the transformed con- 

striction C2D2 (See Fig. 2C). 

of the conformal transformation of 

This can be achieved by means 

' (10) 
z2 = Z1- ?[OlC, 1 + OID1) . 

Substituting equations (8) and (9) in (lo), z2 becomes 

Because of the transformation relationship (ll), the distances 

0 C and 0 D in the complex z2 plane are given by 2 2  2 2  

- 
02c2 - 

and 02D2 - - 

which shows that the new ordinate is 

of the transformed constriction. 

The boundaries shown in Fig. 2C 

3 (13)  

located in the middle 

can be transformed into 

the boundaries shown in Fig. 2D by means of the conformal 

transformation of 
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Z . . (14) -1 2 2a sin [---I . 
z3 =n 02D2 

Substituting equation (13) in (14), and inverting, one 

obtains 

Substituting equation (7) in (ll), and the resulting ex- 

pression in equation (15), the transformation relationship 

between the complex z and z3 planes becomes 

sin (-)=sin K Z  (-) ne  cos (-) nb + sin (x) nb cos (x) ne sin (x) f i z 3  (16) 2a 2a 2a 

which again preservesthe Laplace's relationship and the 

boundary conditions along the transformed boundaries. 

Writing z=x + iy and z - x + iy in the transformation 3- 3 3 

relationship (16) and considering the real and imaginary 

terms, one obtains the following relationships between the 

coordinates in z and z3 planes: 

nb nb nx3 =y3 sin (=) cosh =sin (-)cos (-) +sin (-) cos (*) sin (-) cosh (-) 2a 2a 2a 2a 2a 2a 2a 2a 

. . (17) 

nb nX3 ny3 and cos (a) sinh (a) = sin (-) cos (*)cos (-) sinh (-) (18) 2a 2a 2a 2a 2a 2a 

For heat flow along the constant width (2a) and no 
constriceion ciiaiii-,el shoh~, i f i  ~ i g .  2 ~ ,  tkn c t n z d x r  t n m n e r a t i l r e  

LIIIk urk-UJ --...r-*----- 

distribution is given by 

T = my3 (19) 

where m is a constant. Equation (19) satisfies the Laplace's 
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equa t ion  and t h e  transformed boundary c o n d i t i o n s  of (2) 

through (6 ) .  The cons t an t  temperature a t  t h e  c o n s t r i c t i o n  

h a s  been taken  as z e r o  fo r  convenience. 

E l imina t ing  x between equa t ions  (17) and (18), s o l v i n g  

3 '  3 

3 
for  y s u b s t i t u t i n g  for  y i n  equa t ion  (19), t h e  temperature 

d i s t r i b u t i o n  T i n  t e r m s  of the o r i g i n a l  coord ina te s  and geo- 

metry becomes 

[ s i n  cash (z) - s i n  (E) cos (z) n b  3 2 +cos a =  (2a)s inh2 (g) m a  T = -ash-'{ fi 
2a s i n  2 (-)cos n b  2 (-) n e  2a  2a 

+ [rr.in(E)cosh(E)-sin(s)cos(z)] 2a rtb 2 +cos 2 (-)sinh 2a r X  2 z Y  (2a ) - s in  2 (=)COS n b  2 (x) n e  ] 2 
4 n b  2 n e  

2 a  2a 
- 

s i n  (-)cos (-) 

2 rte (20) 
2a '7 1'21 ' 

2 c  4 cos (2a ) s inh  (2a) 
2 rtb 

2a  

+ 
s i n  (-)cos (-) 

The thermal  r e s i s t a n c e  in t roduced  as a r e s u l t  of t h e  

c o n s t r i c t i o n  i n  the h e a t  f l o w  channel  can  be de f ined  as 

where ATc i s  t h e  a d d i t i o n a l  temperature  d rop  produced by 

the c o n s t r i c t i o n  and H the h e a t  f low rate i n  t h e  channel .  

The temperature  drop  ATc can be calculated f r o m  

I n  t h i s  equat ion  the f i r s t  t e r m  w i th in  t h e  b r a c k e t s  rep- 

r e s e n t s  the actual  temperature drop between y=w and y=o 
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( c o n s t r i c t i o n )  and the second t e r m  the temperature  d rop  

between the s a m e  two p o i n t s  i f  there w e r e  no c o n s t r i c t i o n .  

S u b s t i t u t i n g  equa t ion  (20) i n  (22 )  and t a k i n g  the l i m i t ,  

the c o n s t r i c t i o n  temperature drop becomes 

2am 1 
In[ fie fib 3 ATc = - 

cos (-) s i n  (-) 2a  2a 
If 

The heat f l o w  ra te  H can be c a l c u l a t e d  from 

or 

bT H = (Channel C . S . A . )  ( T h e r m a l  Conduct iv i ty)  (-) 
ayy,,, 

H = 2 a t  k (  aT ) 
a Y  

y = m  

From equat ion  (20), t h e  temperature slope a t  y== i s ,  

S u b s t i t u t i n g  equa t ion  (25) i n  (24 ) ,  t he  heat f l o w  rate 

becomes 

H = 2amtk . 
S u b s t i t u t i n g  equat ions  (23)  and ( 2 6 )  i n  ( 2 1 ) ,  the thermal  

c o n s t r i c t i o n  r e s i s t a n c e  (for one side of t h e  c o n s t r i c t i o n )  

i s  found t o  be 

The c o n s t r i c t i o n  conductance per u n i t  area of t h e  f l o w  

channel ,  b y  d e f i n i t i o n ,  is, 
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or 

1 u =  (Channel C.S.A.)R~ 

(28) 
nk 

1 
cos (-) sin (-) 

U= 

nb 3 'a ne 
2a 2a 

The number of variables in the above equation can be reduced 

by introducing three dimensionless numbers, a constriction 

conductance number U, a constriction number C, and an 

eccentricity number E, defined as follows: 

= -  (29) 2au u (Channel Width) 
k k u =  

(30) 
Constriction width) = - = -  2b b 

(Channel width) 2a a c = (  

(31) 
e 
a-b 

- - -  2 (Eccentricity Width) 
(Channel width) - (Constriction width) and E = 

The eccentricity number E, defined by equation (31) varies 

between 0 and 1 for a given constriction number C. Equation 

(28) can now be written in dimensionless form by using 

equations (29), (30) and (31), resulting in the following 

expression 

1 (32) n u =  

A study of the above expression shows that the constriction 

conductance number U increases with increase in the constriction 

number C, decreases with increase in the eccentricity number 

E, and reaches one-half of the value for the symmetrical case 
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when E h a s  i t s  maximum value of u n i t y .  

For no e c c e n t r i c i t y ,  i n  other words f o r  E=O, equat ion  

(32) reduces t o  

(33)  
- n 

3 1 

s i n  (-) 

- 
YIC 
2 

‘ 0  In{ 

which i s  same as the expression obta ined  for  the thermal 

conductance of two-dimensional symmetrical c o n s t r i c t i o n s  

i n  r e f e r e n c e  ( 4 ) .  Dividing equat ion  (32) by ( 3 3 ) ,  the 

r a t i o  of the  c o n s t r i c t i o n  conductance number for  a g iven  

e c c e n t r i c i t y  t o  tha t  f o r  zero e c c e n t r i c i t y  becomes 

This r a t i o  v a r i e s  b e t w e e n  0 .5  and 1 depending on t h e  va lues  

of t h e  d imens ionless  numbersC and E which can va ry  between 

0 and 1. 

Discussion 

The r e s u l t s  of t he  p r e s e n t  i n v e s t i g a t i o n  and r e f e r e n c e s  

(2) and (4) are p l o t t e d  i n  F igs .  3 ,  4 and 5 as the r a t i o  of 

the  c o n s t r i c t i o n  conductance number t o  t h a t  of  ze ro  eccen- 

t r i c i t y  U/u versus the  e c c e n t r i c i t y  number E f o r  the con- 

s t r i c t i o n  numbers of 0.04, 0.08 and 0.125 r e s p e c t i v e l y ,  

s i n c e  experimental  data were a v a i l a b l e  f o r  these va lues  of 

E. The experimental  points are those of S a c k e t t  (2) f o r  

0 



C = 0.04 and C = 0.08, and of Veziroglu and Chandra (4) for  

C = 0.125. 

analogy w a s  u sed .  

from t h e  p r e s e n t  theory  using the  a p p r o p r i a t e  v a l u e s  of  t h e  

c o n s t r i c t i o n  number C and a l s o  from the r e l a t i o n s h i p s  

derived by S a c k e t t ,  and Veziroglu and Chandra. I n  h i s  

t heo ry ,  S a c k e t t  employing the wedge model described earlier 

obta ined  a r e l a t i o n s h i p  f o r  the r a t io  of  t h e  r e s i s t a n c e  

i n c r e a s e  due t o  e c c e n t r i c i t y  t o  t h e  c o n s t r i c t i o n  resistance 

for  ze ro  e c c e n t r i c i t y .  

numbers, it can be w r i t t e n  as 

I n  t h e  t w o  experimental  i n v e s t i g a t i o n s  electrical  

The t h e o r e t i c a l  cu rves  w e r e  obcained 

I n  t e r m s  of t h e  present d imens ionless  

1 
T T  I n  (x) + C-1 

For  t h e  same r a t i o ,  Veziroglu and Chandra - assuming a 

uniform f l u x  d i s t r i b u t i o n  a t  the  c o n s t r i c t i o n  - ob ta ined  

t h e  f o l l o w i n g  r e l a t i o n s h i p  

2 +sin 2 (nTtC) 

(36)  n=l - - -  U 

uo 8 2  -$sin 2 (*)cos nn 2 [-(l+E-EC)] nn 
n=l  n 2 2 

The  c o n s t r i c t i o n  f l u x  d i s t r i b u t i o n  q' employed i n  

t h e  d e r i v a t i o n  of the above equat ion  can be expressed b y  

H 
2bt  4' = - (37) 

where H i s  t h e  t o t a l  h e a t  f l o w  rate i n  t h e  channel  c o n t a i n i n g  

the  c o n s t r i c t i o n .  Using equa t ion  (20 ) ,  it can be shown t h a t  
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correct f lux dis t r ibut ion q a t  the constr ic t ion would 

H  COS(^) 2a 
9 =  1 - 

2at ,/cos 2 ne s i n  2 (-1 nb - [ s i n  - s i n  (e) cos (-) nb 3 2' 2a 2a 2a 2a 

This relationship shows that  the constr ic t ion flux 

d is t r ibu t ion  i s  not uniform b u t  somewhat parabolic i n  form 

such tha t  it i s  i n f i n i t e  a t  the constriction edges ( i . e . ,  

fo r  x=e-b and x=e+b) and reaches a m i n i m u m  i n  between. 

From Figs. 3 ,  4 and 5 ,  it can be seen t h a t  the agreement 

between the experimental data and two of the theories,  the 

present theory and the theory of reference (4 ) ,  i s  qui te  

good. It i s  interest ing to note tha t  although the constr ic t ion 

f lux d is t r ibu t ion  assumed i n  reference (4) w a s  a n  over- 

simplification of the actual d i s t r ibu t ion  the conductance 

r a t i o  i s  i n  good agreement with the experiments and the 

present theory. However, the present theory, i n  addition 

t o  being the exact solution, has the advantage of being i n  

a very compact form as  compared t o  the i n f i n i t e  se r ies  

form of the theory of reference ( 4 ) .  The agreement between 

the experimental data and the theory of reference (2)  i s  

not so good, except for the extreme values of the eccentr ic i ty  

number E ( i . e . ,  for E=o and E = l )  . 
I n  order t o  compare the present theory with two previous 
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t h e o r i e s  f o r  a w i d e r  range of the c o n s - r i c t i o n  number han 

t h a t  covered i n  F igs .  3 through 5 ,  Table I h a s  been prepared.  

It l is ts  t h e  va lues  of  t h e  conductance r a t i o s  f o r  the t h r e e  

t h e o r i e s  and a l s o  t h e  percentage d ive rgences  of t h e  t h e o r i e s  

of  r e f e r e n c e s  (2 )  and (4) from t h e  e x a c t  s o l u t i o n ,  t h e  pre-  

s e n t  t h e o r y ,  f o r  v a r i o u s  combinations of the c o n s t r i c t i o n  

number and t h e  e c c e n t r i c i t y  number. It can  be seen from 

t h e  table t h a t  a t  the two extreme va lues  of t h e  e c c e n t r i c i t y  

number a l l  the t h e o r i e s  g ive  t h e  same r e s u l t  f o r  t h e  ccn- 

ductance  r a t i o .  However, i n  between t h e  extreme va lues  of 

the e c c e n t r i c i t y  number, t h e  conductance r a t i o  v a l u e s  of 

t h e  theo ry  of r e f e r e n c e  (2 )  is  g r e a t e r  by as much as 4.8% 

t han  those obta ined  from the e x a c t  t h e o r y ,  and t h e  conductance 

r a t i o  va lues  of t h e  theory  of r e f e r e n c e  (4) i s  a l s o  g r e a t e r  

b u t  t o  a smaller e x t e n t  with a maximum divergence  of  1.9%. 

It m u s t  be noted here t h a t  i n  the  e v a l u a t i o n  of equat ion  (36) 

f o r  Table I ,  the f irst  f o r t y  t e r m s  of t h e  i n f i n i t e  series w e r e  

used.  If more t e r m s  were used ,  t h e  maximum divergence would 

have been less  than 1.9%. 

Conclusion 

One c losed  form equat ion i s  d e r i v e d  f o r  c a l c u l a t i n g  t h e  

e x a c t  thermal conductance of two-dimensional eccentric 

c o n s t r i c t i o n s .  The agreement between the theo ry  and expe r i -  

mental  d a t a  i s  good. Thermal conductance of  two-dimensional 

c o n s t r i c t i o n s  increase with (a) i n c r e a s e  i n  thermal  conduc- 

t i v i t y ,  (b) i n c r e a s e  i n  c o n s t r i c t i o n  wid th ,  (c) dec rease  i n  
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channel width, and (d) decrease in eccentricity. 
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Symbols 

A 
a 
B 
b 

C 

D 

E 

e 
F 
H 

i 
k 

I n  
m 

n 
0 

q 
R 

T 

t 
U 

U 

X 

Y 

z 

A 
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Nomenclature 

P o i n t  i n  flow channel  boundary 
H a l f  wid th  of H e a t  Flow Channel 
P o i n t  i n  flow channel  boundary 
H a l f  wid th  of C o n s t r i c t i o n  
C o n s t r i c t i o n  Number (=b/a) : P o i n t  i n  f l o w  
channel  boundary 
P o i n t  i n  flow channel  boundary 
E c c e n t r i c i t y  Number (=e/ (a-b) ) : P o i n t  i n  
f low channel boundary 
E c c e n t r i c i t y  
P o i n t  i n  flow channel  boundary 
H e a t  f l ow rate 

fi 
T h e r m a l  c o n d u c t i v i t y  
N a t u r a l  logar i thm 
P r o p o r t i o n a l i t y  factor: Temperature slope 
away f r o m  c o n s t r i c t i o n  
Number 
Or ig in :  Po in t  i n  f l o w  channel  boundary 
T h e r m a l  f l u x  
Res i s t ance  
Temper a t  u r  e 
Flow channel t h i c k n e s s  
Conductance Number (=2au/k) 
C o n s t r i c t i o n  conductance per u n i t  area 
Abscissa i n  two-dimensional plane:  Abscissa 

i n  complex z p l a n e  
W L u L r r u c r  -A;--+- ir? twc-dimensional p l ane ;  Ord ina te  

i n  complex z p l a n e  
Complex p lane  
Di f f e rence  
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Constriction 
No-constriction 
First transformation 
Second transformation 
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Fig. 1. - Heat Flow Lines and Isotherms in a Two Dimensional 
Eccentric Constriction. 

Fig. 2 .  - Conformal Transformations for Simplifying Boundary 
Conditions of Temperature Distribution in a Two 
Dimensional Eccentric Constriction. 

Fig. 3 .  - Experimental and Theoretical Relationships Between 
Conductance Ratio and Eccentricity Number for 
C = 0.04. 

Fig. 4. - Experimental and Theoretical Relationships Between 
Conductance Ratio and Eccentricity Number for 
C = 0.08. 

Fig. 5. - Experimental and Theoretical Relationships Between 
Conductance Ratio and Eccentricity Number for 
C = 0.125. 
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